Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals

نویسندگان

  • Vladimir A. Fonoberov
  • Khan A. Alim
  • Faxian Xiu
  • Jianlin Liu
چکیده

The carrier recombination processes in ZnO quantum dots 4 nm in diameter , ZnO nanocrystals 20 nm in diameter and bulk ZnO crystal have been studied using photoluminescence PL spectroscopy in the temperature range from 8.5 to 300 K. The obtained experimental data suggest that the ultraviolet PL in ZnO quantum dots originates from recombination of the acceptor-bound excitons for all temperatures. In the larger size ZnO nanocrystals, the recombination of the acceptor-bound excitons is the dominant contribution to PL only at low temperature T 150 K . For higher temperatures T 150 K , PL is mostly due to recombination of the donor-bound excitons. Recombination processes in ZnO quantum dots and nanocrystals differ from those in bulk ZnO mainly because of the large surface-to-volume ratio in both types of nanoparticles and, consequently, a large number of acceptor defects near the surface. No strong inhomogeneous broadening has been observed in ultraviolet PL from ZnO quantum dots. Our results shed light on the carrier-recombination processes in ZnO quantum dots and nanocrystals, and can be used for the ZnO nanostructure optimization for the proposed optoelectronic and spintronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZnO Quantum Dots: Physical Properties and Optoelectronic Applications

We present a review of the recent theoretical and experimental investigation of excitonic and phonon states in ZnO quantum dots. A small dielectric constant in ZnO leads to very large exciton binding energies, while wurtzite crystal structure results in unique ph non spectra different from those in cubic crystals. The exciton nergies and radiative lifetimes are determined in the intermediate qu...

متن کامل

Optical, Photoluminescence and Thermoluminescence Properties Investigation of ZnO and Mn Doped ZnO Nanocrystals

ZnO and ZnO: Mn nanocrystals synthesized via reverse micelle method. The structural properties nanocrystals were investigated by XRD and Transmission electron microscopy (TEM). The XRD results indicate that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. The various optical properties of these nanocrystals such as optical band gap energy, refractive index, dielectr...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Structural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006